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ABSTRACT 

Atmospheric turbulence will induce phase and amplitude fluctuations in 

propagating electromagnetic waves, such as a laser beam. Adaptive optical systems 

attempt to compensate for these distortions. The Strehl ratio is a measure of the peak, on- 

axis intensity after propagation through turbulence divided by the peak irradiance for 

vacuum propagation. 

This thesis investigated the probability distribution of the Strehl ratio of a perfect, 

phase-only, adaptive optical system as a function of the atmospheric coherence length, r0, 

divided by the actuator spacing, d. Using an efficient Fourier algorithm and 28 work- 

stations running in parallel, over 850 million computer simulations were performed for 25 

different d/r0 ratios in order to produce a histogram of the Strehl ratio probability 

distribution. The results show that the Strehl ratio follows a log-normal probability 

distribution even for very small probabilities. 

A second set of computer simulations introduced intensity scintillation by 

including the log-amplitude variance parameter, a/. Much faster, state-of-the-art 

computer workstations enabled over two billion realizations on 18 machines running in 

parallel for comparable time periods. The trends of these results are more complex and 

will require further research and deeper investigation. 
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I.       INTRODUCTION 

A laser beam propagating through the atmosphere will experience degradation due 

to atmospheric turbulence. Temperature differences associated with the turbulence 

generate changes in the air density, and subsequently its index of refraction, with the 

result that parts of the laser beam's spherical wavefront are slowed by differing amounts. 

The field of adaptive optics uses a deformable mirror or a similar device to compensate, 

or correct, for the distortion of the light, effectively reversing the turbulent effects and 

restoring the spherical shape of the wavefront. 

There are three important parameters of significance to this problem. The first is 

the coherence length, or r0, which is a measurable parameter that indicates the severity of 

atmospheric turbulence induced wavefront distortion, and it is extremely variable 

depending on atmospheric conditions at a particular site. The second is the log-amplitude 

variance, a/, which is a measure of the intensity variation of the light perturbed by 

turbulence. 

The third parameter is the Strehl ratio, S, which is a measure of a light beam's 

intensity at the nominal focus, relative to what it would be if the focusing process were 

diffraction limited. The best one can hope for is to achieve diffraction-limited intensity, 

which can be approached with very good adaptive optics correction of atmospheric 

turbulence effects - but which cannot be reached. 



Pertinent to this thesis is the relationship between r0 and af
2 and the randomly 

varying values of the Strehl ratio of a laser beam degraded by atmospheric turbulence and 

(partially) compensated by adaptive optics. The nominal (or average) value of the Strehl 

ratio will be degraded as r0 gets smaller and as a/2 gets larger. However the value of the 

Strehl ratio at any instant is a random variable and there is no exact relationship between 

that value and the values of r0 and oe
2. In fact, for given values of r0 and a2 there will be 

many different patterns of turbulence effects on the light beam, each of which will yield 

its own Strehl ratio. A study of the nature of the distribution of the random values of the 

Strehl ratio and the relation of the distribution to the values r0 and o2 is the subject of 

interest here. 

The problem of assessing the magnitude and significance of the Strehl ratio 

degradation experimentally is made very difficult by the time and effort required 

collecting these measurements in actual site situations. Not only is the required 

equipment complex and expensive, but also conditions change so rapidly with time and 

one can never "select" particular weather conditions to accumulate data measurements. 

As a consequence a very great deal of time in the field would be required to implement 

such an approach. 

Fortunately, due to exponential advances in computer technology, computer 

simulation modeling is becoming increasingly viable for all fields of endeavor. This 

thesis will simulate the propagation of a laser beam through the atmosphere, with 

selectable  values  of r0  and  o2  and  then  evaluate  the   subsequent   Strehl   ratio 



measurements. By combining the computer resources across the Naval Postgraduate 

School, I have been able to run as many as twenty-eight Monte Carlo simulations in 

parallel and generate very large sets of the Strehl ratio values from which the probability 

distributions can be calculated with statistically significant results at very low probability 

levels. 





II.      BACKGROUND 

A.        OVERVIEW 

The atmosphere has multiple affects on the propagation of a laser beam. 

Molecular and aerosol scattering and absorption will attenuate the beam. High intensity 

laser beams can heat the atmosphere as it travels - with consequent effects on the 

propagation of the laser beam, which effects are known as thermal blooming. In addition, 

atmospheric turbulence will distort the phase of a beam and make its intensity non- 

uniform as a result of random variation of the atmosphere's index of refraction and multi- 

path interference induced by the turbulence. As this thesis will only address lower power 

laser beams not significantly affected by thermal blooming, atmospheric turbulence will 

be the only factor considered (Greenwood, 1992, pp.3-7). 

Figures (1) and (2) on the following pages show the effect of the atmosphere on 

laser propagation. These figures plot the intensity distribution as a hot-cold differential. 

In Figure (1), the intensity appears as a hot-cold color-scale for a Gaussian beam after 

long distance propagation through a vacuum. The diameter of the Gaussian waist will be 

proportional in this case to the wavelength divided by the aperture diameter  (w=j/n). 

However, after passing through a turbulent medium as Figure (2) illustrates, the resulting 

beam pattern includes spreading, intensity and phase variations. 



Figure 1. Laser Intensity Distribution through a Vacuum 

B.       COHERENCE LENGTH 

At the heart of describing atmospheric turbulence is the index of refraction 

structure parameter.   Denoted by C„2, it relates the mean square difference in index of 

refraction at two arbitrary points to the two-thirds power of the distance between the 

points. It is defined by the following equation: (Tatarski, 1961) 

((»2-wi) 
Cl=- .2/3 (1) 

Here, r denotes the distance between the two points and the angled brackets indicate an 



Figure 2. Laser Intensity Fluctuations through a Turbulent Medium 

ensemble average value.   The r2ß dependence arises from Kolmogorov statistics of the 

turbulence. 

In practice, it is usually more convenient to measure C„2 indirectly, by measuring 

the analogous temperature structure parameter, C2
T and relating back toC„2 according to 

the relation 

C (    8 p^ 
2 

79-l(T8-V 
I             T2 c T> (2) 

where P is the atmospheric pressure in Pascal and T is the atmospheric temperature in 



Kelvin.  Balloon-launched devices with a pair of fast-response temperature probes 

attached are commonly used to measure C2
T, and from this, C„2 values are determined. 

Once C„2 is known along the path of beam propagation, the coherence length, or r0, can 

be calculated through the following equation for a ground to space propagation:  (Fried, 

1966) 

r =2.1 1.46-it2sec0 \c\{z)dz 

3 

(3) 

In this equation, k=2nl X is the wavenumber and #is the zenith angle of the path whose 

length is z. The coherence length is a measure of the electric field auto-correlation length 

and indicates the severity of atmospheric turbulence.  It is extremely variable depending 

on atmospheric conditions at a particular site. 

The significance of the coherence length arises with an example from astronomy 

(for light propagating down through the atmosphere), although it applies exactly the same 

for laser beam propagation up through the atmosphere, through the principle of 

reciprocity.  When considering the resolution of a telescope, it is a well-understood fact 

that in the absence of turbulence, the angular separation (q>Sep) of two stars that can just be 

resolved is proportional to the wavelength divided by the aperture diameter (Born & 

Wolf, 1970, p.415). For conventional telescopes, r0 is the diameter of the largest aperture 

that can be used without turbulence significantly degrading the image. The effect is that 

A      A 
<p    oc > —.   As the turbulence gets stronger, the values for r0 are driven smaller and 
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the resolution limit/separation (psep will get larger/coarser. For earthbound observatories 

operating at visible wavelengths, r0 typically ranges between five and fifteen centimeters 

(Hardy, 1994, p.61). 

In addition to the spreading of an image spot by random phase variations, 

turbulence also induces variations in the intensity pattern. This is a process perhaps most 

simply characterized as "random apodization." Both phase and intensity variations effect 

the size of the image spot and the system's Strehl ratio. 

C.       STREHL RATIO 

There have been literally hundreds of volumes written on the propagation of light 

and its mathematical characteristics, so only a brief summary is provided here, pertinent 

to the problems addressed in this thesis. Figure (3) below represents a coordinate system 

for discussion (Tyson, 1991, p.6). As a means to simplify terms in the exponent of forth- 
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Figure 3. Reference Coordinates for Electromagnetic Propagation 



coming expressions, the following normalized coordinates in the focal plane are used: 

u = 
In (a* 
I \R; 

z, (4)      and v = ■ 
2n(a} 

R 
r. (5) 

V-fW 

For a beam of coherent light at wavelength A and variable amplitude function, A e ap-S), 

where £ = T}+i(f) can be complex, the intensity of light at a point P on the image plane a 

distance z away is given by: (Born & Wolf, 1970, p.461) 

I(P) = 
Ua2\2 

XRA 

1 In 

\v 
0  0 

<r+< -vpcos(8-i//)—up2 

pdpdO (6) 

The notation used here is illustrated in Figure (3), where the variables (p,0,z) constitute 

a cylindrical coordinate system. R is the slant range from the center of the pupil to point 

P, <j) represents the deviation in-phase from a perfect sphere about the origin of the focal 

plane, and TJ represents the intensity deviations. 

From the standpoint of adaptive optics, and pertinent to this thesis, the most 

important quantity in the above expression is the ^ term, commonly referred to as the 

wavefront phase perturbation. If no aberrations are present (diffraction-limited case), then 

the intensity is a maximum on-axis (r=0), also called the Gaussian image point: (Born & 

Wolf, 1970, pp.461-2) 

I^=Pr^=n2 Ua^ 
\AR2 j 

(7) 

The Strehl ratio, S, is a measure of a beam's intensity at focus (or in the far-field) 

relative to what it would be if there were no optical system induced or turbulence induced 
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aberrations. It is defined as the ratio between the intensity at focus or on-axis in the far- 

field of an aberrated beam and the intensity of an unaberrated beam at the same position. 

The remaining aberrations are represented by £ and the Strehl ratio can be expressed as: 

(Born & Wolf, 1970, pp.462) 

_ (y\ _ ■* \*Origin ) _ _J_ S(v = 0) 
'(4=0 

1 In 

\\e* pdpdG 
0 0 

(8) 

For phase only adaptive optics, intensity variations are ignored (because they 

cannot be corrected), and rj is often set to zero. If both the intensity and phase effects of 

the beam at the pupil are unaberrated (or fo = zero), the Strehl ratio will reduce to unity, 

S = 1, which is to say that the intensity at the focal plane is diffraction-limited. This is 

the unattainable goal of perfect adaptive optics; to correct the wavefront in such a manner 

that $> = 0 and the Strehl ratio is unity. 

D.       COMPUTER SIMULATION OF BEAM PROPAGATION 

A word needs to be said concerning the implementation of beam propagation 

using computer simulation. There are essentially two methods. The first method is most 

intuitive to the casual observer, by defining a beam profile and actually propagating it by 

using Fourier transform matrices as the Optical Transfer Functions (OTF's). One can 

create the random phase screen (representing the turbulence), then take the Fourier 

transform and multiply by the input beam pattern. The propagation distance is important, 

because the underlying principle is Huygens-Fresnel propagation.    This method of 

11 



Simulation can be extremely accurate, although multiple passes are frequently necessary 

to represent long propagation lengths through different turbulent areas (Davis, 1994, pp. 

34-36). One other important point is the fact that both amplitude and phase effects from 

the turbulence occur with each propagation step. For the second method, the amplitude 

effects must be characterized separately from the phase effects, and then combined at a 

later time by use of convolution (Fried, Sep 1997, p.ii). 

The second method is based on reciprocity in optical propagation. It allows us, 

instead of considering propagation of a laser beam to the far-field through multiple layers 

of turbulence - instead to consider a distorted laser beam arriving at an aperture after 

propagation through turbulence and then to simply consider the propagation of that laser 

beam, in one step, to focus. Use of this second method allows us to make use of our 

knowledge of the statistics of the beam's distortion after propagation through the 

distributed turbulence to avoid the multi-step calculation of propagation through 

distributed turbulence. Ignoring intensity variations, which we do in this section (though 

not in the next), we simulate the phase variations of the laser beam after it has propagated 

through the distributed turbulence by a single phase screen. (To have simulated 

propagation through the distributed turbulence, we would have needed a number of such 

- weaker - phase screens.) 

The simulation of the phase screen requires knowledge of the power spectral 

density of the medium through which the beam will propagate. This context requires an 

accurate power spectral density for the phase screens. Fortunately, much research has 

been completed in this area by pioneers in the field, such as Tatarski, Kolmogorov, and 

12 



Fried. Without showing the full development, it can be shown that since the phase 

structure function follows a five-thirds power law, then the power spectral density, <$p, 

has the form: (Fried, Sep 1997, p.2) 

_      ,_. .     —5/31 I —11/3 ,_. 
<t>p(K) = Ar0     \K\       , (9) 

where 

3    . 

/ 
4r li 

5/6 /1V1 

«0.04579117422. (10) r 
v6y v6y 

This equation for the power spectral density provides a means for generating phase 

screens that contain the proper atmospheric phase statistics. This formulation allows easy 

scalability to different turbulence conditions through the r0-term. 

Section III of this thesis includes the effects of the turbulence along the 

propagation path in terms of the wavefront distortion at the optics aperture, without the 

effects of intensity scintillation included. The value of r0 characterizes the wavefront 

distortion and the phase structure has a five-thirds power-law dependence (Fried, 

Sep. 1997, p.l). The efficiency of this method is greater than the first method described 

above, because the entire propagation can be represented by one phase screen, requiring 

only one Fourier transform to complete the simulated propagation. Additionally by 

convolution, a two-dimensional phase screen (256 x 256) contains separate realizations. 

The effects of intensity scintillation can be simulated separately and in the same 

manner as the phase effects, which is to say finding an expression to represent the power 

spectral density for the intensity scintillation pattern.   Intensity scintillation is an effect 

13 



that cannot be corrected by any conventional form of adaptive optics (Fried, May 1997, p. 

ii). This would be extremely troublesome except for the fact that intensity scintillation 

effects in the atmosphere are much smaller than the phase effects (Greenwood, 1979, p. 

550). Hence, adaptive optic systems are proving very effective by just compensating for 

the phase distortions. Nevertheless, the effects of intensity scintillation are non-negligible 

and will be addressed, later in Chapter IV. 

14 



III.    STREHL DEGRADATION DUE TO PHASE EFFECTS 

A.       OVERVIEW 

These investigations utilized computer simulation source code written by Dr. 

David Fried in the MATLAB programming language, and as such, required modifications 

before applying to this particular problem. In the course of accomplishing the 

modifications, a considerable amount of effort was required to understand the intricate 

programming techniques used to arrive at an efficient algorithm. After all, the ultimate 

task is to produce computer simulation code that can produce very large samples of 

random strehl ratio measurements efficiently in order to investigate very small probability 

events. 

An example here is appropriate: Consider a turbulence strength of interest being 

an average value (r0 = 10 cm), and one measurement of the strehl ratio from an adaptive 

optics compensated system results to S = 0.35. Is this average? Is it extremely good and 

luck was on our side? Or is it much worse than had been hoped, and luck definitely was 

not on our side? One very good way to answer this question is to collect a large number 

of sample measurements of the strehl ratio when the r0 value is always 10 cm, and then 

look at the average and standard deviation of the sample. The larger the number of 

samples, the more confident one can be in saying that, for example, the 0.35 strehl ratio 

was indeed an average and there is a significant probability that the next measurement 

15 



will be as poor as 0.25, ... or not. It is the efficient development of very large numbers 

of sample values that is the core of the work reported here. 

B.        PHASE SCREEN GENERATION 

To generate a random phase screen, one must first generate a suitable 'random' 

starting set of numbers, and then scale to the desired statistics. Remembering that the 

spatial frequency components are continuous, a substitution will be made to account for 

discrete representation in the computer simulation environment. Discrete spatial 

frequencies will be noted by ' in ' in place of the continuous ' K ' spatial frequency, both 

in units of cycles/unit length. As such, ' w(m )' will be defined to be the N x N array of 

random values - each value with its corresponding one of the N x N spatial frequencies. 

In the phase screen generation algorithm that is used here, the values of w(m) are chosen 

from a Gaussian distribution with zero mean and unity variance - in other words, 

standard white noise. The values of w(jn) will be complex: (Fried, 1996, p.3) 

w(m)= wR(m) + iwj (m)., (11) 

with wR {m) and w, (m) each being real Gaussian random variables with unity variance. 

As stated previously, from equations (9) and (10), the power spectral density 

produces a suitable random phase screen. That is to say that the phase screens generated 

will have a five-thirds power law structure function. For this to be so, from equation (9), 

the spatial frequency components of the power spectral density must be proportional to 
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the minus eleven-thirds power of the magnitude of the spatial frequency (Fried, 1996, 

pp.2-3). Accordingly, we write 

0p(m)ccMm\        , (12) 

where, because the power spectral density will be proportional to the square of the 

magnitude, to arrive with a minus eleven-thirds power law, the square root has been 

applied: (Fried, 1996, p.4) 

, r_x    \a\m[nl6w(m),    if\m\*0 .... 
<j>P{m)=\   'I v   > _ . (13) 

[ 0, if\m\ = 0 

Here, the «-coefficient encompasses the ability to scale the 'strength' of the phase screen 

so that it will correspond to the desired value r0, and will be discussed in the next 

paragraph. Also, realizing that the zero spatial frequency component will only affect the 

average (or dc) value of the simulated phase screen it has been set to zero, avoiding an 

infinite result. 

The value of the or-coefficient is developed and given by Fried to be dependent on 

the size, N, of the array: (Fried, 1996, pp. 13-15) 

.JV-5/3-//AT2 

a = ß , (14) 

where ju = 0.98965794 , and ß= 6.8838772, and the values for S2(N) and Sj(N) are given 

in Table (1). 

The random array <j)p (jn) conforming to the power spectral density characteristics 

of a random turbulent phase perturbation, can be converted back into the spatial domain 
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N Si(N) S2(N) 

16 2.27148846e-07 2.26348792e-05 

32 3.49154895e-09 5.23979146e-07 

64 5.43330535e-ll 1.15360543e-08 

128 8.48088179e-13 2.46158319e-10 

256 1.32479989e-14 5.14359846e-12 

512 2.06986786e-16 1.05908706e-13 

1024 3.23411700e-18 2.15760798e-15 

Table 1. Screen size (N) dependent a-coefficient scaling factors. 

via the inverse Fourier transform: ^P{K)—-—>0p(r), in the continuous case - and, in 

the analogous discrete case:^(?w)—-—>&P(p). This will be accomplished in the 

discrete two-dimensional case, according to the following equation: (Fried, Sep 97, p. 4) 

</>P(P) = N~
2
 E J.(m)exp 
m,n=] 

2nim- 
N 

(15) 

where m = (m,ri). Once in this spatial domain form, <f>P{p) will consist of a complex 

random array, the real and imaginary parts of which each will correspond to a random 

phase pattern. This phase pattern is suitable for high spatial frequencies but has a 

deficiency in the lowest spatial frequency components. Dr. Fried states, 

This is manifested by a structure function for this pattern which has the 
appropriate five-thirds power law dependence for separations much 
smaller than the real-world physical size of the screen, L, but deviates 
very significantly from that power law behavior for separations as large as 
L/l 0, and even decreases in value as the separation increases beyond L/2 
(Fried, Sep 97, pp.4-5). 

In order to compensate for this deficiency in the lower spatial frequency 

components, Fried has developed a suitably chosen random tilt term that can be added to 

18 



<j>P (p). The results with this added term prove sufficient, and the resultant simulated 

phase screen will be accurate, i.e. its structure function will follow a five-thirds power 

law for all separations. The extra tilt-term can be seen developed and validated in the 

reference source (Fried, 1996). However, in this treatise, this additional tilt term is not 

necessary since the adaptive optics will have no problem canceling that part of the phase 

variation. This particular exercise will be limited to laser apertures under the correction 

of adaptive optics, and as such, the adaptive optics will introduce their own transfer 

function - eliminating most the wavefront distortion, to be discussed later. The pertinent 

point here, is that the adaptive optics can correct the tilt terms in the distorted wavefront 

very effectively, thereby eliminating the need to include them in the first place (Fried, 

1998). 

C.       ADAPTIVE OPTICS COMPENSATION 

As mentioned previously, the adaptive optics component will introduce its own 

Transfer Function (TF), and as such, will require treatment in this simulation. To be 

precise, the adaptive optics will correct all phase fluctuations to the extent that the size of 

the sub-aperture will allow. For example, if it were possible to build an adaptive optics 

system with infinitely small sub-apertures, then the wavefront distortion could be 

corrected perfectly. Allowing for finite size sub-apertures there will be residual errors 

after adaptive optics correction; we shall consider adaptive optics systems with finite size 

sub-apertures, thus introducing the deviation from perfection whose statistics are studied 

here. In addition, we will ignore latency effects caused by the time delay required by the 
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adaptive optical system. The imperfection of the compensation provided by the adaptive 

optics is represented by what is called the residual phase error, by the deviation of the 

corrected wavefront from perfection; this is called fitting error. 

In this simulation, the residual fitting error will be developed from the phase 

screen through the use of its transfer function mentioned earlier. As developed in 

Greenwood, 1979, the adaptive optics corrected residual phase error can be represented 

by the following equation; returning to a familiar continuous treatment, we write 

<f>AO(F) = Jexp(2;rirc-r)TA0(K) 0P(K)die, (16a) 

and 
$AO(

K
)= \exp(-2xiK-r) <f>A0{r)dr 

(16b) 
= TA0{K)<f>P{K) 

where TAO(K) is the adaptive optics fitting error transfer function written in frequency 

terms. 0P(K) is the Fourier transfer of 0P{r), which is the phase without correction from 

adaptive optics, as previously discussed. As shown in Greenwood, 1979, the value of 

TA0 (ic) is given by the following equation: 

?*>(*)=h- 
2 J] \n\ K \d) 

n\lc\d 

AJ2\7Z\K\d) 

n\Jc\d 

-1 2 

(17) 

where d denotes the effective size of the sub-aperture components in the adaptive optics. 

As can be seen from Figure (4), the TA0 (ic) transfer function has the effect of attenuating 

the lower frequency terms and passing the high frequency terms, analogous to a high-pass 

filter in electronics (Greenwood, 1979). 

20 



TAO 

1   .-^SSS^H! 

0.8. 

0.6. 
y^^ 

0.4. 

0.2. 

v              v    v'        ■ 

0^ "'r> ::^^^w ■■■■■■><-- 
10    \^ ....7**?.'.'.' '.*.'-•.-* 

5^ 

0 
0 

-r-"*"'       c 

^^^10 

Ky 
-5 

-10    -10 
Kx 

Figure 4. Greenwood Transfer Function Parallels a High-Pass Filter 

D.        STREHL COMPUTATION 

The computation of the Strehl ratio turns out to be the most time-intensive portion 

of the simulation. However, through the use of a fast Fourier transform (FFT) and clever 

assumptions, one statistically random phase screen realization can generate many 

simulation results. In the case of one phase screen represented by equation (15) and 

simulating the random perturbations a light ray has encountered through the turbulent 

medium, the Strehl ratio can be computed by comparing the intensity calculation with the 
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phase screen to that intensity calculation of a reference intensity with zero phase 

perturbations (diffraction-limited). 

For an aperture whose center is at r, the signal power, P(r), comes directly from 

squaring the signal strength, S(r). The signal strength calculation is most conveniently 

expressed in the following manner, which facilitates future development: 

S(r)= \4f-jf) e*p{iMn)&', (18) 

where  0P(r') represents the previously discussed random phase distortion function 

evaluated at r'. The aperture function, ,4 (5c), is defined as follows: 

f 1,        */|*|<| 
I 0,        if otherwise 

Thus A 
ff'-r 

V 
represents an aperture of diameter D on the r' - plane, with its center at 

D 

r'=f. The representation provided by equation (18) is beneficial two-fold: a) the 

reference intensity is easily calculated up-front by replacing the <j)P(r') with 0P(r') = 

zero, and b) the calculation of the signal strength with phase distortion and adaptive 

optics compensation can be completed easily by replacing the 0P(r') with 

<fip(r') zz> 'PAO^') from equation (16). 

It is here that Fourier transforms can be used to provide a tremendous increase in 

productivity. As described in the previous section and also as represented in equation 

(18), it is assumed that the r vector is positioned at the center of the array (although not 

explicitly stated as such) and that the r' vector moves with the integration along all of the 
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points over the aperture. In fact, the r vector does not need be positioned at the center, 

and as Fourier transforms will allow, the r vector can be positioned at every point and 

continue with the integrations through the virtual use of the two-dimensional convolution. 

Following Fried, 1997, the phase exponential will be defined: 

t/(r) = exp{/^0(r)}, (20) 

so that equation (18) becomes: 

Sir)=\A[^-^U(f')dF'. (21) 

Written this way it is manifest that S(r) is equal to the convolution of A with U. A 

convolution indicated by the usual (*) designation, of the two elements in the integrand of 

equation (21) would appear as follows: 

S(r) = A 
rr_f\ 

* U(r') , (22) 
v   D   j 

where the S(r) result would now be an Nx N matrix of the same dimensions as the U(r') 

matrix. Following the treatment shown by Fried, and independently applying convolution 

manipulation, equation (22) is transformed again using Fourier transforms: 

S(r) = jexp(2xiK-r)A (K)Ü(K) die, (23) 

where A (K) and U (K) are defined by the following equations: 

A(Z)= jexp(-2xiK-r)A(r)dr. (24a) 

Ü(Z)=jexp(-2ffiK-r) U(r) dr. (24b) 

23 



One other point of note concerns the value of the Fourier transformed elements, 

and in particular the value of A(K). AS opposed to the case of Ü(K), which includes 

calculating a two-dimensional FFT of the randomly generated U(r), the value of A(ic) is 

a closed-form result depending on the geometry of the aperture. In this case, a uniform 

circular aperture is used, and the corresponding result can be expressed as follows: 

A(K) = -TID
2 

4 

2 J, (jt\ K ID 

7T\K\D 
(25) 

This expression allows a more refined representation in the computer code, avoiding the 

computer rounding inaccuracies that arise during the calculation of the discrete FFT. A 

smooth illustration of the Fourier transform of a circular aperture is shown in Figure (5). 

E.        INCORPORATION INTO COMPUTER CODE 

All of the previous sections contain the mathematical background for efficiently 

generating many simulations of Strehl ratio calculations for a given set of initial 

conditions. As will be detailed later, the different exponential degrees to which 'many' 

can cover will depend on the speed of the computer being used as well as how many 

computers (or processors) can effectively be utilized in parallel. This section will present 

the applicable formulations to take into account discrete implementation as opposed to 

the continuous treatment previously discussed. 

The last discrete formulation presented was Equation (15) representing the 0P(p) 

phase perturbation term in frequency space. The next two equations present the discrete 
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Figure 5. Fourier Transform of a Circular Aperture (Spatial Frequency Domain) 

version of the adaptive optics compensation, TA0{K) from Equation (16): 

*m =nd^K2
m + KI and (26) 

TAo{m) = ]   1- 
2J,fe) 

-i2 

4J2(xJ (27) 

Incorporating Equation (27) into the resultant phase perturbation and performing the 

inverse discrete Fourier transform result in the following two equations: 

$AO (m ) = TAO (m) E ^ (P) 
exP 

( P^ -2niK 
v N 

and (28) 

25 



0AO(P)= E ?^oWexp 
/ 

m,«=l 

2niK„ •■ 
N 

(29) 

The culminating incorporation into the discrete adaptive optics compensating phase 

screen, UA0 (p), is given by the anti-climactic expression: 

UAo(p) = zxp{i0Ao{p)l (30) 

Its discrete Fourier transformation follows: 

( 
-2TCiK„ • 1' 

N 
(31) 

In order to discretely represent the Fourier transform of the aperture, a conversion 

of Equation (25) yields the following two discrete representations: 

Xm=7tD4K2
m+K2

n,     and (32) 

A(m) = -7tD2 2Jj(Xm) 
X. 

(33) 

Possessing discrete formulations for both ÜA0{m) and 2(m), the discrete conversion of 

Equation (23) follows easily: 

S{ß)= N-2 ± ÜA0{m)A(m) exp  2 */*.,„ -JA . (34) 
m.n=\ 

After completion of Equation (34) in the computer code, we are effectively left 

with a statistically random N x N matrix of signal strength values, all for the same 

aperture diameter D and the same r0 value. The signal strength values can then be 

squared and divided by the reference intensity value, yielding an N x N matrix of Strehl 

ratio values. Figure (6) is a block diagram representation of the functional flow 
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throughout the computer code. It starts from the very beginning of variable initialization 

and reference intensity computation through the finishing - which is only truly finished 

when the desired number of Monte Carlo realizations has been reached. Numbers, for 

instance through the completion of this thesis, range from two loops in the process of 

testing code accuracy to 83,000 loops in the preparation often billion realizations for one 

particular r0 value. A later version of the computer code, written in Matlab and named 

'Sin.m'*, is provided in Appendix (A). As such, this version includes extra code to 

account for intensity scintillation effects to be discussed later in chapter IV. 

F.        RESULTS 

1. Preparation 

Over the two-week span of 12-26 March 1998, results were gathered from 

implementation of the aforementioned computer code, which at the time, was named 

'turro.m.' The following parameters will be analyzed as a result of those computer runs, 

although all may be changed to run any particularly interesting case. An aperture diameter 

size of 1.2 meters will represent the telescope, with adaptive optics sub-aperture 

components having an effective diameter size of 15 centimeters. The resultant D/d ratio 

in this case becomes 8.0. The simulated size of the phase perturbation screen will be 3.0 

meters, thereby fully covering the simulated aperture. Finally, the range of eleven r0 

values will be applied, from 12.6 to 14.1 centimeters in increments of 0.015 centimeters. 

* 'Sin' is short for 'scintillation' in this particular case, not to be confused with any religious meaning. 
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Figure 6. Block Diagram of Functional Flow in the Computer Code 

The resultant d/r0 ratios in this case become 1.190 down to 1.064.  These parameters are 

summarized in Table (2). 
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Parameter Initialized Value 

Aperture Diameter 1.2 (m) 
Sub-Aperture Diameter 0.15 (m) 

D/d Ratio 8.0 
Screen Diameter 3.0 (m) 

Values ofr0 (meters) 0.1410, 0.1395, 0.1380, 0.1365, 0.1350, 0.1335, 
0.1305,0.1290,0.1275,0.1260 

0.1320, 

Resultant d/r0 Ratios 1.0638,1.0753,1.0870,1.0989, 1.1111,1.1236, 
1.1494,1.1628,1.1765,1.1905 

1.1364, 

Values of Scintillation Zero 
Screen Size(N) 256 x 256 

Table 2. Initialized Parameters for Results of Turro' Computer Runs, 12-26 March 1998. 

As mentioned earlier, the design of the computer code allows many simulations to 

be run on different computers, effectively parallel processing without actually linking the 

processors. In fact, the storing of the values in a sparse matrix (histogram fashion), 

allows the programmer to gather the results from each separate computer that was utilized 

and add all of the results together into one combined sparse matrix. Figure (7) below 

displays the results that were generated from the above initialized values. The 

observation of "830 million per line" indicates the number of Monte Carlo simulation 

results that built each apparently Gaussian shaped bell curve. Each run through the main 

loop of the program yields 2 x 2562 or 131,072 realization results. One quick calculation 

reveals that 6336 runs through the main loop were needed for each r0 value, yielding a 

total of 69696 runs for all eleven values of turbulence severity. 

To appreciate the magnitude of this number, consider the following actual 

numbers obtained during the generation of the lines on Figure (7). One run through the 

main loop of the computer code, executed in Matlab on a 200 MHz Intel® Pentium® Pro 
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Figure 7. 12-26 March 1998 'Turro' Computer Code Results 

(circa 1997) personal computer (PC), requires approximately one minute. The required 

run time would result to 484 days which is clearly well over a year for completion. 

Utilizing access to a multitude of Sun® SparcCD-workstations (circa 1990) across the 

Naval Postgraduate School campus proved to be the saving grace. Although the time to 

complete the main loop on any individual Sun was significantly slower than the PC, the 

greater number was invaluable. 

A familiarity with the Unix® operating system is essential to efficiently gather 

data from multiple runs across the campus network. One needs first to check the 

prospective machine to determine the processes already running and then start the Matlab 
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programs running in the background before moving to the next machine. The "rsh" 

command is needed to log-on quickly, complete business on the machine, and then exit to 

"rsh" on another. At the time of execution in March of 1998, there were seventeen 

Sparc®-stations in Ingersol Hall, thirteen in Root Hall, and eight in Spanagel Hall for a 

total of 38 prospective machines. Only 28 of the machines turned out to be 'available' 

after checking to ensure that nobody else was running their own programs, taking up 

precious processor usage time. Over the course of nearly a week on 28 machines, the 830 

million simulations were realized. 

2.        Examination of Results 

The data displayed in Figure (7) was gathered in such a way as to allow 

examination in the following manner. In order to analyze low-probability events, the data 

must be converted from a histogram showing a bell curve into a corresponding 

probability distribution graph. The histogram is essentially a probability density curve for 

each curve. Computing the cumulative probability is necessary in order to generate the 

next graph, displayed as Figure (8). A curious circumstance of working in such extreme 

low probabilities is the number of 'nines' (high), or 'zeros' (low). A probability of 

0.0000001 = 10"7 is displayed in the graph's y-axis as (-7), short for 1.0E-7, and 

conversely a probability of 0.9999999 = 1-10"7 is displayed as (7), short for 1.0E-7 or 7- 

nines (high). 

The next order of business is that of prediction — or at the very least, is there 

some natural mathematical law that is discernable from the data? Referring to Figure (8) 
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Figure 8. Strehl vs. Probability with Crossing Line 

again, there is a vertical broken line drawn at Strehl = 0.30. One can visualize an infinite 

number of parallel curves above and below the eleven curves shown, and the vertical line 

graphically cuts through all eleven and extends outward into the infinite number of other 

such curves not shown, nor even generated. Changing the axes of the graph and plotting 

differently, Figure (9) below shows five such vertical lines plotted as d/r0 versus 

probability. The lines appear to be very straight. Nevertheless, exactly how straight are 

they? 

To check the straightness of the lines, it is necessary to generate a separate set of 

data at less severe turbulence values, or higher r0 values. Take the higher Strehl = 0.370 
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Figure 9. Turbulence Severity vs. Probability for selected constant Strehl lines 

line for example from Figure (9). One can "fit" an exact line to the data points that are 

plotted as an apparent straight line. That same Strehl = 0.370 fitted line can then be 

extrapolated further to the bottom-left of the graph. Figure (10) displays that detailed 

extrapolation for the top three lines from the previous Figure (9). Figure (10) also 

displays the results, shown as small circles according to the legend, of Strehl probability 

data generated separately according to the initialized variables shown in Table (3). The 

initialization values shown in Table (3) were chosen to provide "checker" data points. As 

plainly seen from Figure (10), the "check" data, labeled as "test" data, does not fall on the 

extrapolated line from the "fit-to" data. At the time, this was a very discouraging result. 
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Parameter Initialized Value 

Aperture Diameter 1.2 (m) 
Sub-Aperture Diameter 0.15 (m) 

D/d Ratio 8.0 
Screen Diameter 3.0 (m) 

Values ofr0 (meters) 0.1590, 0.1560, 0.1530, 0.1500, 0.1470, 0.1440 
Resultant d/r0 Ratios 0.9434, 0.9615, 0.9804, 1.0000, 1.0204,1.0417 
Values of Scintillation Zero compensation 

Screen Size(N) 256 x 256 

Table 3. Initialized Parameters for "Test" Data of Turro' Computer Runs, 12-26 March 1998. 

Evaluation that is more extensive led to the following question. If not straight on a linear 

scale, how straight is the line on a log scale? 
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Keeping the dependent axis the same, but changing the independent axis to a log 

scale proved to be the answer. Figure (11) shows the results from such a change. The 

fitted line was fitted to the logarithm, base 10, of the "fit-to" data. The same 

extrapolation was performed and in the same manner, the small circles represent where 

the "checker" data resulted. As can also be seen plainly from Figure (11), the data fall on 

a very straight line, indeed, albeit a straight logarithmic line. 

= '   |   '   1 1      1      1      1      1      1      |IIN|IIN|llll|lll||l-l||IUI|l|ll|l|ll|lin|UII||l|l|l|lljll|l||ll|||l|l|l|ll|l|iyN 

(5) i^ _J 
/'' 
/ 

0.999 —: Straight Line Fit to Data     /    / 
~_ /.''      .* 

/     / _= 
/     /     / _ 

=. < = 0.0 Np2                    /     /     / z. 

0.9 i_ L                    K                         /        /         «  = 
L. D/d = 8.0                   /     /     / -5 

>-             t- .**            /            / 
4—>                      &- /            / 
•—     o st- ?'            /          / 
_Q              t /     y 
(3              t X     <-'''     / 

-Q {- &'    /' 

2    0.1 
P'     /'     ,/  5 

Q_ 
=■ / / </ -Z 

& 
0.01 /     /     0' 

'■>■■"   /*    ••• 

/   g/    /                  x:   Fit-To  Data 
r- 

••'"   /   /                    0: "Test" Data 1 
0.0001 ß 

~M z           / 
,■•& 

"3 
0'" 

(-6) 

F" 1    y 
••-'"" 

- 1 1 1 .+ 1       \       1       1       1       1       litiil^iir|iinhiir[riti Innliiitliiiil iml ni|l iinlmtlllllliltiluiitiinln lilint ,,„1,1 
V    0/ 

-0.05 0                              0.05 
Log10(d/r0) 

0.1 

Figure 11. Strehl Extrapolation Lines on a Logarithmic Scale 

35 



36 



IV.     STREHL DEGRADATION DUE TO PHASE AND 
SCINTILLATION EFFECTS 

A.        OVERVIEW 

It is a fact that adaptive optic systems are indeed proving very effective by just 

compensating for phase effect distortions along the path of light propagation. However, it 

is also considered interesting and possibly extremely helpful to model the effects of 

intensity scintillation and combine the model with that already discussed in an attempt to 

evaluate the same low probability Strehl events. As mentioned previously, the effects of 

intensity scintillation can be simulated separately and in the same manner as the phase 

effects, that of finding an expression to represent the power spectral density. Once that 

expression is determined and then validated, it can be included into the 'turro.m' program 

to again generate many simulations for a given r0 value and a given value of intensity 

scintillation, ae . 

For the following development, it is assumed that the particular optical system in 

question has the capability to perfectly correct phase-only perturbations with its adaptive 

optics components. We will continue to use the principle of reciprocity to analyze a laser 

beam propagating outward and upward though the atmosphere towards a target in space. 

And as before, we will only be concerned with an evaluation of the statistics of this 

scintillation effect. As such, and following Fried (from Fried, 1997, p.3), the statistical 

notation, t (F), called the turbulence induced random log-amplitude at position r, will 
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represent all of the effects of turbulence that will be of concern to us in this thesis.  The 

next section will address the details of its development. 

B.        SCINTILLATION SCREEN INCORPORATION 

The purpose of this section is to develop a similar random screen to the phase 

perturbation screen from the previous chapter, with this particular screen, <f>t, having the 

statistical characteristics of atmospheric turbulence induced intensity scintillation. More 

explicitly, we wish to able to express an optical field, U(r), in the following expression: 

E/(F)=V2exp(^(F)). (35) 

This will prove desirable as we can again use equation (21), developed earlier in chapter 

three and reproduced here for the benefit of the reader: 

r'       — 

S{r)=\A\r—^\u{r')dr'. (21) 
D 

1. Log-Amplitude Fluctuation Statistics 

The random log-amplitude, I (F), as developed in the turbulence literature from 

Kolmogorov to the present, may be considered to be a random function characterized by a 

mean value ~t and a covariance function Ct (F) . These two functions are defined by the 

following equations: (Fried, 1997, p.5) 

~t = (Ur)), (36) 

and      Ct(r)={[l{r'+\7)-l\[l{r'-{¥)-!]) . (37) 
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A very instrumental parameter follows, called the log-amplitude variance and 

denoted by a,2. It corresponds to the r =0 value of Ce (r), which is to write explicitly: 

<?]=Ct(0). (38) 

The importance of this parameter stems from the following relationship that can be 

shown from conservation of energy principles: 

! = -G). (39) 

This states simply that given a value of a/, we empirically know the mean value of the 

random log-amplitude function (Fried, 1997, p.5). 

The following equation, (40), follows from more detailed development presented 

in Fried, 1997. The pertinent points to be taken from this development include the fact 

that the Ce (r) function depends on the path and the particular wavelength. The 

propagation path in this thesis runs from 5=0 on the ground to s => oo at the space end 

of the path. The notation k again refers to the optical wavenumber related to the 

wavelength by the expression k=2nlX. Presented without derivation, we write: (Fried, 

1997, p.6) 

at=Bk1/6   { C2
N(s) s5/6 ds , (40) 

PATH 

where the value of B is given asB* 0.56315761.  Hence, we are left with a means to 

measure, or in this case, generate a given value of o(
2. 

The other important parameter, the covariance function Ct (r), is needed in order 

to generate the power spectral density, <&e. Once given a power spectral density, we can 
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impart that statistic onto the random generated values representing the spatial frequencies 

- exactly as done in the previous chapter when producing the phase perturbation screens. 

The important results will again be presented, allowing the interested reader to review the 

source document for details. After appreciable development in Fried (1997, pp.6-7), we 

write: 

Ce(r)= jexp(2;n'A: -r) $>e(tc) die, (41) 

where it is noted that the two functions are Fourier transform pairs. The power spectral 

density, Oe, is given by the equation: 

®e(K) = Ak2(2xys/3\ic\-uß   I C2
N(s) 

PATH 

1-cos (27T)2\ic\2- M      '    k. 
ds. (42) 

where the value of A is given as A« 0.65150030 and the path is the same as above. 

2.        Screen Formulation 

Incorporation into scintillation screen computer code follows very closely to that 

presented in the previous chapter. The generation of the array of random values is 

accomplished in the same manner, by defining the spatial frequency components of the 

array, w(m). These elements will again be complex and take on random values with zero 

mean and unity variance. For the sake of clarity, the two components of the m vectors 

will be Km and Kn, with the values before randomization initialized as follows: 

KmandKn s ™/L, (43) 

where m will be defined: 
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f(m-l) if     \<m<\N 
m = < . (44) 

[(m-N-Y)      if     \N<m<N v   ' 

The second step will also be the same as the random values are scaled to be 

proportional to the magnitude of the square root of the log-amplitude's power spectral 

density. Corresponding to equation (12) in the earlier development, this can be expressed 

in the spatial frequency domain as follows: 

l(m) = w(m)(a^ Oe(m) )   , (45) 

where the a scaling factor is defined as a = N2/L in order to account for the physical 

size of the screen. This will be apparent in the next step, where the result of the inverse 

Fourier transform, as realized by an inverse FFT, will now produce a suitable magnitude 

result. (Fried, 1997, pp. 10-11) 

The third step corresponds to the recently developed equation (40), replacing the 

integration with a summation: 

N  ~ ( m\ 
i{p) = N-2 £ ^(m)exp 2ni—    . (46) 

m,n=l V N ) 

For the sake of clarity, the £(p) result is a two-dimensional complex array of random 

values denoting spatial coordinates, remembering prior to the final step that the mean 

value here is still zero. 

All that is left to do in the fourth and final step is to apply the mean value as 

defined in equations (36) and (39). This is realized by computing equation (40) in 

discrete increments (i.e. estimating the integration by selecting a finite number of 

intervals in the path).   The mean value adjustment is made, yielding the screen(s) and 
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written in the following two relationships: 

MP)I=XU(P)}-CT1 , (47) 

and      <f>t(p)2 =z{e(p)}-crl  ■ (48) 

It is at this point we have a statistically sound representation of the log-amplitude 

function, and the interested readers are referred to the source document (Fried, 1997, pp. 

11-15) for verification of the accuracy with this method. These screens represented by 

equations (47) and (48) are now ready to implement in the computer code as an extension 

to equation (30), written as follows: 

^o+*(p) = exp{/^0(p)}-exp{^(p)} . (49) 

There is no deviation in the remainder of the 'turro' computer from this point on. 

A word about the real-world practical significance of the turbulence induced log- 

amplitude value is relevant here. The unit of measurement for oe
2 is the square Napier, 

which is denoted as Np2. Actual turbulent airflow measurements range from an ideal of 

zero through a typical measurement of a/ = 0.05 Np2, up to a severe turbulent condition 

of <ye =0.15 Np2. It is with this a/ value that the turbulence severity will be represented, 

just as the r0 value represented the turbulence severity in the phase perturbation of the 

beam. 

C.       RESULTS 

Over the two-week span from 21  October- 4 November 1998, results were 

gathered from implementation of the combined computer code, which at this time is 
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named 'sin.m.' The following parameters will be analyzed as a result of these computer 

runs, although just as earlier mentioned, all initialized parameters may be changed to run 

any particularly interesting case. An aperture diameter size of 1.1 meters will represent 

the telescope, with adaptive optics sub-aperture components having an effective diameter 

size of 10 centimeters. The resultant D/d ratio in this case becomes 11.0. The simulated 

size of the phase perturbation screen will be 3.0 meters, which again will fully cover the 

simulated aperture. 

With additional code to account for the intensity scintillation, the average time to 

complete one main loop of the code is increased to approximately one minute thirty 

seconds on the same 200 MHz PC. Consequently, the range of r0 values will be reduced 

to three, namely 10.2, 11.1, and 12.0 centimeters. The resultant d/r0 ratios in this case 

become 0.980 down to 0.833 . Finally, each of the r0 values will be coupled with five 

intensity scintillation values ranging from a very severe oe
2 = 0.11 Np2 all the way down 

to zero scintillation. These parameters are summarized as well below in Table (4). 

Parameter Initialized Value 

Aperture Diameter 1.1 (m) 
Sub-Aperture Diameter 0.10 (m) 

D/d Ratio 11.0 
Screen Diameter 3.0 (m) 
Wavelength (A) 0.840 (microns) 

Values ofr0 (in meters) 0.1200,0.1110,0.1020 
Resultant d/r0 Ratios 0.8333, 0.9009, 0.9804 

Values of Scintillation (in Np2) 0.11,0.07,0.03,0.01,0.00 
Screen Size(N) 256x256 

Table 4. Initialized Parameters for Results of Sin' Computer Runs, 20-31 October 1998. 
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The long time delay between the two sets of runs (seven months) proved to be 

beneficial in one respect: it allowed new workstation computers to be acquired, greatly 

improving processor speeds and memory availability. The following histogram results, 

displayed in Figure (12) below, represent two billion simulated realizations of the 

combined computer code. The results are also displayed with a legend, clearly illustrating 

the gradual Strehl ratio decline for each of the three r0-values as the intensity scintillation 

gets increasingly worse. 

The long time delay between the two runs also proved to be detrimental in another 

respect: the results were actually gathered after the author's graduation date and thereby 

represented a successful stopping point in the life of the thesis. Time is not available in 
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Figure 12. 20-31 October 1998 'Sin' Computer Code Results 
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this thesis for detailed examination of the results, as we were able to do in the previous 

chapter. Only cursory remarks will be made during the following presentation of the 

various 'snapshot' figures, with the intention of stimulating thought for further 

examination in another thesis, possibly. The cursory examination will be presented in 

two segments. The first segment is shown as "blow-up" views of each of the three 

separate r0-value groups, followed by the five views of each of the a/-value groups. 

Close evaluation of Figure (12) reveals one very evident feature: the bell-shaped 

characteristic of each curve gets wider for each increase in <ye
2. An even clearer 

manifestation of this is seen in Figures (13), (14) and (15) where it can be seen that the 

slope of the curves decreases as ae
2 increases. The rotational differences in the slope of 

the probability lines towards the clockwise direction are indicative of the widening. 

There is also an appearance that the lines would actually cross high and to the right, if in 

fact, the lines were extended further to the right. 

We will make two remarks here concerning the previous observation. The first 

remark is a confirmation of earlier hypothesis and very limited actual measurement. The 

<je -value has a greater impact on the variance of the Strehl ratio measurement. The 

decrease in slope as the intensity scintillation increases, so indicated in the three previous 

figures, is in direct support of the increase in variance. Statistical calculations on each of 

the bell curves support an increase in both the standard deviation and the variance as the 

intensity scintillation increases. 
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Figure 13. Strehl vs. Probability Lines at d/r0 = 0.833 

The second remark will require extra work in the future for validation. This 

concerns the overall r0-value after both r0 and a,2 parameters have been combined. For 

example: we first selected an r0-value (i.e., r0 = 12 cm) and then selected a scintillation 

value (a/ = 0.05 Np2), without readjusting the r0-value for the worsening that will occur 

as a result of the addition in scintillation. In fact, the actual r0-value would worsen (to 

approximately r0 = 10.5 cm) because the added intensity scintillation has an effect on the 

r0-value measured at the aperture. An approximate solution would be to centroid align a 

set of intensity variance curves leaving d/r0 constant. Unfortunately, since the shapes of 

the histograms change slightly for different d/r0, this is not exact. Further research will be 

needed to resolve this interaction. 
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It is the author's contention that as the intensity scintillation increases, the starting 

r0-value would need to be weaker (i.e., r0 = 13.5 cm), so that after applying the same 

scintillation value (a/ = 0.05 Np2), the desired r0-value would deteriorate (to r0 = 12 cm). 

This 'fix' would transpose each of the lines to the right in proportion to the increase in 

Ge , forcing the intersection to move down to the center position of 0.5 probability - 

effectively having all five of the lines rotate around one central position. 

The remaining five figures (16-20) present the same information organized in a 

different manner. In examining these figures, it will be noted that the Strehl ratio shifts to 

the left as each figure represents a constant cr/-value with varying phase-only r0-values. 
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Figure 16. Strehl vs. Probability Lines for CTf = 0.11 Np2 
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V.      CONCLUDING REMARKS 

A.       LESSONS LEARNED 

The list of the many lessons that were learned will be shortened to include only 

the most important ones. The big lessons that must be learned very well include the 

following: 

D   Become intimately familiar -with the Matlab programming language. 

□   Learn the basics of the Unix OS, well enough to movefiles around (using ftp 
and telnet), and execute files in the background. 

D   Get access to the fastest workstation processors available that can run 
Matlab. At the time of this printing, on the NPS grounds, this includes the SGI 
Octane® and the Sun Ultra 60 Sparestation®. 

Smaller lessons are important as well, because they will often be the cause of 

pounding headaches. First, it is imperative to have one different program for each 

separate machine, in order to save to separate data files. The separate data files will 

continue to grow as the program progresses, and when finished, the data files can be 

loaded one-by-one into Matlab and recombined by adding together the individual sparse 

matrices. Second, the random number generator must be well understood. A key 

statement that should be inserted into each file is the following: 

"randn('state',sum(100*clock))." Otherwise, Matlab will begin each individual session 

with the exact same 'state' and then follow with the same random numbers every time — 

it is known as a pseudo-random number generator. 
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During the course of this thesis, several problems were encountered while 

attempting to run Matlab scripts in the background on different workstations around the 

NPS grounds. First of all, the Matlab code must be a script to run in the background. 

Functions will not process. Good information can be found on this topic at the Matlab 

web site. Next, it is highly recommended to check the processes running on a particular 

machine - before starting a Matlab process in the background. The 'ps' command will 

perform this function, with the 'ps -aux' switches working well on SunOS systems, and 

'ps -aef ' working well on Solaris and IRIX systems. Anything less than 99 percent 

processor usage time is detrimental to the speed of processing one's program, as well as 

increasing the chances of death by interference. Working over long weekends and holiday 

breaks is a good practice to follow. 

B.        POSSIBLE FUTURE RESEARCH 

This would best be stated as "where do we go from here?" There are several 

avenues of research that can be pursued. Just as the scintillation was added to the 

simulation from the initial effort, more effects can be modeled and effectively added to 

the simulation. Optimization of the computer code so that it may be run on faster 

mainframe computers is an interesting field of work as well. This section will address 

just a few of these avenues, and rest assured, close liaison with Dr. Fried is strongly 

advised (vital) for any work surrounding this computer code. This is especially true now 

that it has been changed quite a bit by the author. 
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Within the operational field of adaptive optics, there are two especially promising 

topics thought to be "doable" with respect to realistic simulation on computers. The first 

topic is called branch points. Branch points are manifested in actual field measurements 

from adaptive optics systems, specifically, when attempting to correct phase perturbations 

in the presence of strong scintillation. Very simply, adaptive optic corrections are 

'measured' by sensing the phase of adjacent light rays in the focal plane, and then 

calculating differences between the measurements. When there is zero intensity in one 

particular spot on the focal plane, there is a 2n anomaly in the phase which the adaptive 

optics system cannot cope with properly. This is known as a branch point from 

mathematics theory and it causes a malfunction in the sensor. Dr. Fried has some 

thoughts on how this might be represented in this type of computer simulation. 

One other promising topic is called latency within the adaptive optics field. 

Inherent in the process of phase corrections is the fact that a correction is inevitably being 

applied based on a measurement taken a short time (on the order of milliseconds) prior. It 

should be possible to develop an algorithm capable of making a more informed 

correction, based not only previous data, but also an educated (algorithmic) prediction. 

Successful efforts in this area would reduce feedback problems associated with the 

sensors and enable higher Strehl ratio capabilities. 

There are three more topics that present challenging difficulties, but not much 

thought has been devoted to solutions. They are listed briefly here, intended only to 

stimulate thought: 
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D   Measurement noise, 

D   Non linear signal processing, and 

D   Servo effects not covered by a time delay. 

With respect to computer code manipulation, the need for speed in processing 

time never diminishes. Short of waiting for the next generation faster processor and 

faster memory, the only other way is to "streamline" the code. During the course of this 

thesis, we attempted to use a Matlab compiler with the intention of generating an 

executable file in C or C++. Conversion into executable code would enable adaptation 

onto much faster mainframe computers, such as SGI Cray machines, for example. 

Unfortunately, there were two important functions within Matlab ('sparse' and 'spline') 

not supported by the Matlab compiler - curious as that was. We also considered 

converting the entire program into C++, but quickly found that daunting task more suited 

to a team of C++ programming specialists. Recently, newer versions of the Matlab 

compiler are being released with claims of support for previously unsupported functions, 

and would thereby be worth trying. 

One other important point concerning Matlab that may be important when porting 

to multi-processor machines is the limitation that it cannot utilize them efficiently. 

Fortunately for this application, the parallel nature of the code not only allows multiple 

runs to process on separate machines, but multiple runs capable on the same multi- 

processor machine. Each of the processors within the computer will take dedicated time 
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for its respective program, and there is no loss in processing time - effectively getting 

twice the output in the same amount of time on a dual-processor machine. 

C.       CONCLUSION 

In this thesis, over two billion computer-simulated realizations verified a log- 

normal relationship between the Strehl ratio and its probability distribution value for a 

given d/r0 value, and similarly a log-normal relationship between the d/r0 value and its 

probability distribution value for a given Strehl ratio value. Extremely low probabilities, 

down to 1.0 x 10"9, correspond to the number of realizations collected, with stability in 

the lines down to a probability of 5.5 x 10"6. Most recently, over the course of a week, 21 

computer workstations plus another 5 dual processor workstations (effectively acting as 

10) were running 31 separate copies of the computer code to generate 15 curves. 

This computer code is available to run simulations for any given adaptive optics 

aperture arrangement in any given atmospheric turbulence condition. Through the 

principle of reciprocity, the code is applicable to laser beam transmission up through the 

atmosphere, as well as light collection in an astronomical telescope. It can be scaled to 

run any desired number of realizations, given the proper computer resources and realistic 

time constraints. The histogram results are conducive to probability analysis and can 

therefore be used in conjunction with other criteria to make informed decisions about 

prospective adaptive optics system design 
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APPENDIX A.   MATLAB COMPUTER CODE 'SIN.M' 

Sin.m 

y. 

'A  Script-i called Sin (short for scintillation) n to incorporate Dr. Fried's 
'/.  programs-  Both of these function programs are designed to 
'/.   run using variables referenced to an r-sub-D (ro) which is equal to the 
V.   size-. Li of the phase screen-, i-e-i D is actually incorporated as D/ro- 
'/. 
'/.  This script will utilize the same calculations and fix the aperture 
7.   sizei Dn to a fixed sub-aperture sizei di and run through a range of 
'/.   (ro) values. The 'fixed' parametersi Dn di and Li therefore must 
'/.  be scaled for each run through different (ro) values. 
'/. 
'/.  The scintillation has been incorporated alsoi to run through a range of 
"/.  values using sigma-sub-L squared- 
'/. 

7. 
'/. 1) N = lb thru IDS1! possible choices (in powers of 2) 
7. 
7. 2) Required Matlab functions or scripts for this to work at compile time: 
7. — Scinfun-m 
7. — avint-m 
7. — hvS7-m 
7. — psdgen-m 
7. 
7. 3) Choose desired values for: 
y. — ro [range of values^ 
7. — sigma Erange of valuesli 
7. — Di aperture diameteri in metersi 
'/. — di sub-apertures effective diameteri in metersi 
y. — Li effective length of phase screeni in metersi 
'/. — frii number of loops for desired computation 
y. -- filenamei for saving data 
'/. 

tO = clocki 
'/.   Define parameters for Ro 'manipulation 
N = 25b; 

ro = E.DM0->.037-..D3m; 
sigma = C-lli-07i-D3i-Dili 

D = l.li '/.  aperture diameteri in meters 
d = 0-li y.  sub-aperture diameteri in meters 
L = 3^ '/.   screen lengthi in meters 
aa = length(ro) \ 
bb = length(sigma)i 

7.   Scale the physical parameters to the varying Ro value 
LL = L./roi 
DD = D./roi 
dd = d-/roi 
clear L D di 
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'A  Calculated  results   for  S-functions   in  denominator  of   alpha 
Sl=CE-27mfl6Mbe-D7n   B-MHlSMfiTSe-DT-,   5.43330535e-ll-.   fl. MfiOflfil^le-lS   ... 

1.32147^6^6-14-,   e-DblobVabe-lb-i   3.23mi70De-lfl3i 
S2=E2.2b34fi7':!2e-05-,   S^^llMbe-O?-.   1.153b0543e-Ga-,   2 • MblSÖSlTe-lO   ... 

S.m3S^flMbe-12-.   l.DS^GB7Dbe-13-.   2.1S7bD7cifle-lS]i 
sl=Sl(log2(N)-3)i 
s2=S2(log5(N)-3)i 
clear   SI  SS; 

H  =   N/2i 
alpha   =   sqrt(b.flfl3fl77*((2*H)A(-S/3)-D.^flc5bSfl*(2*n)A(-E))/(s2-sl)); 

'/.  Define the spatial frequency range for phase screen generation later 
f=C0:(M-l) (-H):(-l)Ji 
f2=f.A2; 
F2=ones(2*M-,l)*f2i 
F2=F2+F2'; 
F2(lnl)=epsi 
clear f f2i 

F3 = alpha * (F2. A(-H/12) ) \ 
F3(lnl)=D; 
clear alpha 

ppUt=Cl; 
IntenRef=C3i 

for qq = l:aa 

'/.  Generate the spatial frequency scaled by 1/LL and then in 2-D 
kappa = E0:((N/2)-l) (-N/2):(-1)3/LL(qq)i 
kappa = meshgrid(kappa)i 
kappamag = sqrt (kappa- AS+kappa' -AE) •■, 
kappa = linspace(min(min(kappamag)) -.max (max (kappamag)) i2*N) i 

V.   Generate the spatial freq. transform of the apertures-, which again has 
X  been scaled by the varying Ro value 
x = pi*kappa*DD(qq)\ 
Ut = D.25*pi*(DD(qq)A2)*(Cl 2*bessel j (1-.X (2 : (2*N))) . /x (S : (2*N) ) ]) \ 

'A  Calculate the reference intensities for Strehl computation later 
ppliltO = spline(kappa-ildt); 
U = sqrt(2)*ones(N) i        '/.  Phase screenn U 
Ut = fft2(U)i V.  Phase screen transform-. Ut 
Ut = ppval(ppUtGnkappamag); V.  Aperture transform-. Ut 
V = abs(ifft2(Ut-*Ut)) i     V.  Uniform reference intensity for diff-limit 

^Concatenate results for later multiple use 
IntenRef = CIntenRef-, V (1-.1) AE3; 
ppUt = CppUti ppUtO Hi 

end 
clear x lilt ppUtO U Ut V qqi 

Prob=sparse(lnliD-.aa*bbilDe3-.lDe3*aa*bb):; 
uu = IrleMi 

randn('state'-.sum (IDG »clock)); 
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X   Begin major looping through ranges of (ro) and (sigraa) values 
for fn = 1:750:. 

count = li '/.  Keep track through the interior loops- 

for nn = l:aai '/.  Loop through the (ro) values 

for mm = l:bbi        '/.  Loop through the (sigma) values 

scrn—fn = randn(2*M-.2*M) + i*randn(2*MT2*(1) i 
scrn—fn = F3-*scrn—fni 

x=pi*sqrt(F2)*dd(nn)/LL(nn)\ 
x(lil)=epsT 
T=sqrt(l-(2*besselj(lnx)./x).A5-e»*besselj(2-ix)./x).A2)i 
clear x\ 
T(l-il)=Di 
scrn = scrn—fn-*Ti clear Ti 
scrn = ifft2(scrn) * ((LL(nn))A(5/b))i 

'/.  Function call to get the scintillation screen scaled to sigma value 
EscrnScJ = Scinfun(Nisigma(mm)) i 

kappa = ED:((N/2)-l) (-N/2):(-l)l/LL(nn)i 
kappa = meshgrid(kappa)i 
kappamag = sqrt(kappa-A2+kappa'-A2)i 

U = sqrt(2)*(exp(i*real(scrn))-*exp((real(scrnSc)-sigma(mm))))i 
Ut = fftSCU); 
Ut  =  ppval (pplilt(nnn:) nkappamag) i 
V = abs(ifft2(Ut-*Utm 

prob = round(10e3*(V(:)-A2/(intenRef(nn)))) T 
ii = find(prob == G)i 
prob(ii) = li 
Prob = Prob + sparse (count iprob-ilTaa*bbil0e3) i 

U = sqrt (2) *(exp ( i*imag (scrn)) - *exp( (real (scrnSc)-sigma (mm)) ) ) => 
Ut = fft2(U)i 
V = abs(ifft2(Ut-*ltlt))i 

prob = round(10e3*(V(:)-A2/(lntenRef(nn))))n 
ii = find(prob == D)i 
prob(ii) = li 
Prob = Prob + sparse (countiprobiliaa*bb-il0e3) i 

count = count+li 

end 
end 

'/.  Save the data every few runs in case of unsolicited stopping- 
if mod(fn1S0)==D 

ttt=etime(clockntD) \ 
save Sin701 Prob fn ttti 
disp( C 'frame #' int2str(fn) '-' 1   )\ 

end 
end 
clear nn scrn—fn scrn F2 F3 pplilt kappamagi 
clear U Ut Ut V kappa prob scrnSci 
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fn = E'done ' intEstr(fn) ' runs'] 

ttt=et ime(clock-, tO) i 
uu = uu/leM'n 

'/.  Save the data here at the end 
save Sin701 Prob fn ttt uui 

'/.   Execute TimeDisplay M-file-i if it exists, 
if exist('TimeDisplay-m') 

TimeDisplay(ttt)i 
end 

V.   Important to have this 'quit' when running on 
'A   Silicon Graphics SGI machines 
quit 
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APPENDIX B.   REQUIRED MATLAB FUNCTIONS FOR 'SIN.M' 

Scinfun.m 

V. 

X   Function! called Scinfuni to incorporate Dr- Fried's two programs-i 
'/.  psdgen and log—amp-screen- As the adaptive optics are phase-correcting 
'/.   onlyT no corrections will be introduced here-  The turbulence will be 
'/.   varied through the severity of the C-sub-N squaredn which in turn will 
'/.   be set to the values used in the Turro script runs- This will also 
'/.   require a wavelength selection! not needed in Turro- 
V. 

y. 

'/.  N = lb thru IDEM possible choices (in powers of 2) 
'/. 

function EscrnnsiglsqU = Scinf un (N -.ro ) 

*/. Define parameters for Ro manipulation 
lamb = D-SMe-tiT     '/.   AMD nanometers - near infra-red light propagation 

D = D-Mi '/.   physical aperture diameter (m) 
L = 3\ '/.   physical phase screen diameter (m) 

"/. Scale the physical parameters to the varying Ro value 
LL = L/roi '/.   all arrays (1 x length(ro)) 
DD = D/roi 
clear Di '/.   keep (ro) for later conversion to actual value (cm) 

'/.  Generate the PSD for the scintillation in the turbulence 
air = logspace(DiloglD(3eM)n5SD)i 
CN50 = hvS7(air)i 

'/.  Still need to coordinate the ro with CN5 — basically dial the 
'/.   CNE value using the ro value as the knob 

'/.   lile will assume that (ro) from hvS7 equals S-7 
hveeS? = -05?:. 

randn('state'nsum(100*clock))i 

aaa = ((ro*L)/hveeS?)A(-S/3)\ 
CNE = aaa * CNEOi 

CsiglsqnppPSD] = psdgen(airiCN2Tlamb):i 

'/.   Define the spatial frequency range for phase screen 
mt = 1:(N/S)i 
mt = Cmt-1 (((N/E)+l) :N)-N-13i 
kappa = mt/LLi 
kappa = meshgrid(kappa)i 
kappamag = sqrt(kappa-AE + kappa'-AE); 
clear kappa; 

61 



srPSD = sqrt(ppval(ppPSDnkappamag))i 
clear kappamag; 

alfa = NAS/LL; 
scrn-fn = randn (N)+i*randn(N)'-, 
scrn—fn = (alfa*srPSD)■*scrn—fni 
clear srPSDi 

scrn = ifft5(scrn-fn)i 

avint.m 

v. 
'/.  Function! called avint(xnyixloTXup) to perform integration 
'/. of a curve defined by data points (xny) using overlapping 
'/.  parabolas. Integrates from xlo to xup- These do not need to be one of 
'/.   the actual abscissa pointsi x(i). Must have xlo < xup. These default 
y.   to xlo = x(l) and xup = xdength(x)) i 
'/. 
'/.   Coded from Davis a Rabinowitz-i "Methods of Numerical Integration-i" 
'/.  pg-Mfl3 — *tjb 6/1/11 
V. 

function I=avint ( x -,y ixlo ixup) 

n = length(x) i 
if narginOi xlo = x (1) ixup = x (n)'-,   end 

syl=xloi 

for ib=l:n 
if x(ib)<=xloT breakn end 

end 
ib=min(max(5iib)in-l)i 

for j=n:-l:l 
if xup> = x(j)i break-i end 

end 
j = max(ib-imin(jin-l)-l)i 

sum=Gi 
for jm=ib:j 

xl=x(jm-l)ix2=x(jm):ix3=x(jm + l):i 
tl=y(jm-l)/((xl-x2)*(xl-x3))i 
t2=y(jm)/((xE-xl)*(x2-x3))i 
t3=y(jm + l)/((x3-xl)*(x3-x2)):, 
A=tl+t5+t3i 
B=-(x2+x3)*tl - (xl+x3)*t2 - (xl+x2)*t3i 
C=xB*x3*tl + xl*x3*tE + xl*x2*t3; 
if jm==ib 

ca=A:icb=B;cc=C:i 
else 

ca=-5*(A+ca) icb=-5*(B+cb) :,cc=.5*(C + cc) i 
end 
sum=sum + ca*(x2A3-sylA3)/3 + cb*-5*(x2A2-sylA2) + cc* (x2-syl) =. 
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ca=A=icb=Bicc = Ci 
sy ^xEi 

end 

I = sura + ca*(xupA3-sylA3)/3 + cb*- 5*(xupA2-sylAE) + cc*(xup-sy1): 

hv57 .m 

v. 
'/.   Functioni called hvS7n computes the HVS/7 CnA5 profile - This was 
'/.   converted to m from the Fortran source in the tOSC library- 
•/. 
'/.   alt is an array of values and the function returns an array of values- 
'/. 
X MODEL = XXXD7 
V. 

'/. modelname = 'Modified Hufnagel-Valley' 
'/. 

function   cnE   =   hvS7(alt) 

model   =   S1D7:. 

cnE   =   D*alti 

inatmos   =   (D   <=   alt   <=   EM000)i 

if   all(-inatmos) 
return 

end 

al   =   alt (inatmos)\ 
v  =   ceil(model/100)i 
cn2(inatmos)   =   (E-Ee-53*al-AID   .*   ((v/E7)AE*exp(-al/lDGO))    --- 

+   l-e-lb*exp(-al/lS00))*E-7i 
low  =   (0   <=   alt   <   11000)i 

cnE(low)   =   cnE(low)+l-7e-m*exp(-alt(low)/100):i 

psdgen.m 

y//////////.y.yy//////.y.y//////////y.y^//////^^ 
y. 
'/. Functioni called psdgenn used to generate results for the PSD of the 
'/. log-amplitude covariancei Phi-sub-1(k)n and for the log-amplitude 
'/. variancen sigma-sub-1-squared - It takes as inputs values for the wave 
'/. lengthn and the value of C-sub-N-squared at various positions! s-i 
'/. along the propagation path- The PSD result is reported out in spline 
'/. fornii suitable for use by the function ppval- 
y. 
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'/. 
X INPUTS 
m/- s       dim)    = Position along propagation path (in meters). 
V. CNE    CUm)   = Value of C-sub-N-squared at positons along the 
% propagation path (in mM-2/3)). 
>. lambda  (l-il)    = Wave length (in meters)- 
7, 

'/. OUTPUTS 
'/. siglsq  d-,1)    = Log-amplitude variancen sigma-sub-1-squared 
y (in Np^E) . 
y. ppPSD   (InSm)   = Spline coefficients for the evaluation of the 
y power spectral density at a spatial frequency 
y whose magnitude is given in cycles/meter  
y (in NpA2/(cycles/m)A2)- 

function Esiglsq-,ppPSDJ=psdgen(s ->CN2-. lambda) 

k = 2*pi/lambdai 
F = 'avint'i 

B = 2A(-M/3)*piA(3/5)/(3*Cos(pi/12)*gamma(2/3)); 
siglsq = B*kA(7/b)* f eval (F-,siCN2- *s . A (S/b)) i 

A = (2A(S/3)*sqrt(pi)/1)*(gamma(ll/t)/gamma(lD/t.))i 
kappamax = 20*(k/(2*pi*max(s)))\ 
kappa = kappamax*logspace(-5iD1333)'-, 
kappamll3 = A*kA2* (2*pi ) A (-6/3) *kappa . A (-11/3):, 
kappasq = (2*pi ) A2*kappa - A2/k =; 

PSD = zeros(l-,333)i 
for n=l:333 

PSD(n)= kappamll3(n)*feval (F-,s-,CN2-*(l-cos(kappasq(n)*s))); 
end 

ppPSD = spline(kappa-iPSD); 
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APPENDIX C. EXTRA INTERESTING RESULTS 

Along the course of completing this thesis, not everything went according to plan, 

nor as one would want to happen. The following mistake was the cause of nearly a 

month in lost time, but hopefully at a cost of deeper understanding. At some point during 

the preparation phase of the combined phase and scintillation program, "sin.m," the 

author inadvertently input unrealistic values for the aperture diameter and its sub-aperture 

diameter. The "unnoticed until examination of results" mistake led to an unrealistic D/d 

ratio of 4.0 and unintentionally broadened the Strehl range of the Gaussian-shaped bell 

curves. The resultant "straight" cumulative probability lines were noticeably not straight, 

and, in fact, the "sin.m" program could not duplicate the previous "turro.m" results when 

zero scintillation was initialized. After a line-by-line check of the two programs, the 

different aperture initializations were noticed, but not before one billion simulation 

results were developed and examined. The results from that data set, called at the time 

"combine.m," are reproduced here in the appendix for the perusal of interested readers. 

As presented in the body of the thesis, the following Table C-l is a concise 

summary of the initialized values for this set of results. It can be seen that we ran five 

values of r0 versus seven total values of a/ (including the value of zero scintillation). 

The following Figures (C1-C3) should be self-explanatory after the thesis 

presentation for the subsequent runs of 'Sin," although we will mention two points of 

interest.   First, the range of Strehl ratio realizations is quite large, from approximately 
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0.25 up to 0.75.   This can be physically explained as having effectively only four sub- 

apertures 

Parameter 

Aperture Diameter 
Sub-Aperture Diameter 

D/d Ratio 
Screen Diameter 

Wavelength (A) 

Values ofr0 (in meters) 
Resultant d/r0 Ratios 

Values of Scintillation (in Np2) 
 Screen Size(N) 

Initialized Value 

0.40 (m) 
0.10 (m) 
4.0 
3.0 (m) 

0.840 (microns) 

0.1260, 0.1200, 0.1140, 0.1080, 0.1020 
0.7937, 0.8333,0.8772, 0.9259, 0.9804 
0.10, 0.08, 0.06, 0.03, 0.02, 0.015, 0.00 
256x256 

Table C-l. Initialized Parameters for Results of'Combine' Computer Runs, 10-26 September 1998. 

across the entire aperture, not able to provide much correction at all. Second, as a 

consequence of such a wide spread in Strehl ratio realizations, the probability lines in 

Figure (C2) are very long and not as straight as noticed in all of the other runs (which 

were done with a more realistic D/d ratio in every case). This can be physically explained 

as approaching the linear boundaries of zero and one on either side of the Strehl axis. 
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Figure C2. Strehl vs. Probability Lines at d/r0 = 0.794 
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Figure C3. Strehl vs. Probability Lines for <sf = 0.06 Np2 
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